> <\body> \; \<#56FE\>\<#5F62\>\<#7F16\>\<#7A0B\>>|\<#6D6A\>\<#718A\>\<#732B\>\<#513F\>>|>>|>> \<#4ECB\>> \<#56E0\>\<#4E3A\>\<#7684\>\<#4ECB\>\<#7ECD\>\<#8D44\>\<#6599\>\<#4E0D\>\<#591A\>\<#FF0C\>\<#6240\>\<#4EE5\>\<#6253\>\<#7B97\>\<#8FB9\>\<#5B66\>\<#8FB9\>\<#5199\>\<#FF0C\>\<#5199\>\<#4E00\>\<#7CFB\>\<#5217\>\<#7528\>\<#4F5C\>\<#56FE\>\<#7684\>\<#5C0F\>\<#6587\>\<#7AE0\>\<#3002\>\<#65E9\>\<#5148\>\<#6211\>\<#5728\>\<#81EA\>\<#5DF1\>\<#7684\>\<#535A\>\<#5BA2\>\<#4E0A\>\<#5199\>\<#8FC7\>\<#4E24\>\<#7BC7\>\<#FF1A\>\<#4F7F\>\<#7528\>Scheme\<#5728\>\<#4E2D\>\<#751F\>\<#6210\>\<#56FE\>\<#7247\><\footnote> \<#548C\>\<#4F7F\>\<#7528\>Scheme\<#5728\>\<#4E2D\>\<#753B\>\<#5185\>\<#6838\>\<#4EE3\>\<#7801\>\<#7ED3\>\<#6784\>\<#4F53\>\<#5173\>\<#7CFB\>\<#56FE\><\footnote> \<#FF0C\>\<#5BF9\>\<#5176\>\<#56FE\>\<#5F62\>\<#7CFB\>\<#7EDF\>\<#7684\>\<#6587\>\<#6863\>\<#6811\>\<#6709\>\<#4E00\>\<#4E2A\>\<#5927\>\<#6982\>\<#7684\>\<#4E86\>\<#89E3\>\<#3002\>\<#8FD9\>\<#6B21\>\<#6253\>\<#7B97\>\<#7CFB\>\<#7EDF\>\<#6027\>\<#5730\>\<#4ECB\>\<#7ECD\>\<#4F5C\>\<#56FE\>\<#65B9\>\<#6CD5\>\<#5E76\>\<#6784\>\<#5EFA\>\<#7528\>\<#7F16\>\<#7A0B\>\<#4F5C\>\<#56FE\>\<#7684\>\<#914D\>\<#7F6E\>\<#6587\>\<#4EF6\>\<#3002\> \<#672C\>\<#6587\>\<#5BF9\>\<#8BFB\>\<#8005\>\<#7684\>\<#57FA\>\<#672C\>\<#8981\>\<#6C42\>\<#5C31\>\<#662F\>\<#719F\>\<#6089\>\<#7684\>\<#57FA\>\<#672C\>\<#4F7F\>\<#7528\>\<#548C\>\<#8BED\>\<#8A00\>\<#7684\>\<#57FA\>\<#7840\>\<#3002\>\<#76F8\>\<#5173\>\<#7684\>\<#64CD\>\<#4F5C\>\<#548C\>\<#5185\>\<#90E8\>\<#539F\>\<#7406\>\<#FF0C\>\<#6211\>\<#5C3D\>\<#91CF\>\<#4F1A\>\<#4F7F\>\<#7528\>\<#81EA\>\<#5DF1\>\<#7684\>\<#8BED\>\<#8A00\>\<#9610\>\<#8FF0\>\<#6E05\>\<#695A\>\<#FF0C\>\<#6216\>\<#8005\>\<#7ED9\>\<#51FA\>\<#5B98\>\<#65B9\>\<#6587\>\<#6863\>\<#7684\>\<#5177\>\<#4F53\>\<#4F4D\>\<#7F6E\>\<#3002\>\<#53E6\>\<#5916\>\<#FF0C\>\<#672C\>\<#6587\>\<#539F\>\<#59CB\>\<#6587\>\<#6863\>\<#6258\>\<#7BA1\>\<#5728\>Github<\footnote> \<#4E0A\>\<#FF0C\>\<#6240\>\<#4F7F\>\<#7528\>\<#7684\>\<#7248\>\<#672C\>\<#4E3A\>\<#3002\> <\remark> \<#7531\>\<#4E8E\>\<#6587\>\<#4E2D\>\<#4F7F\>\<#7528\>\<#4E86\>\<#5927\>\<#91CF\>\<#4EA4\>\<#4E92\>\<#5F0F\>\<#8FDB\>\<#7A0B\>\<#FF0C\>\<#5728\>\<#539F\>\<#59CB\>\<#6587\>\<#6863\>\<#4E2D\>\<#624D\>\<#80FD\>\<#591F\>\<#5BF9\>\<#5176\>\<#6C42\>\<#503C\>\<#5E76\>\<#4F5C\>\<#56FE\>\<#FF0C\>\<#6240\>\<#4EE5\>\<#8BF7\>\<#4F7F\>\<#7528\>\<#9605\>\<#8BFB\>\<#539F\>\<#59CB\>\<#6587\>\<#6863\>\<#3002\> > \<#672C\>\<#6587\>\<#7684\>\<#4EA4\>\<#4E92\>\<#5F0F\>\<#4EE3\>\<#7801\>\<#7684\>\<#6267\>\<#884C\>\<#5047\>\<#5B9A\>\<#8BFB\>\<#8005\>\<#662F\>\<#4E00\>\<#6B21\>\<#6027\>\<#4ECE\>\<#4E0A\>\<#5230\>\<#4E0B\>\<#8BFB\>\<#5B8C\>\<#5168\>\<#6587\>\<#FF0C\>\<#5F53\>\<#7136\>\<#8FD9\>\<#662F\>\<#4E0D\>\<#73B0\>\<#5B9E\>\<#7684\>\<#FF0C\>\<#6240\>\<#4EE5\>\<#9644\>\<#5F55\>\<#7684\>\<#5C0F\>\<#8D34\>\<#58EB\>\<#5EFA\>\<#8BAE\>\<#4F18\>\<#5148\>\<#9605\>\<#8BFB\>\<#FF0C\>\<#4EE5\>\<#65B9\>\<#4FBF\>\<#4F60\>\<#7B2C\>\<#4E8C\>\<#6B21\>\<#9605\>\<#8BFB\>\<#672C\>\<#6587\>\<#4E2D\>\<#672B\>\<#8282\>\<#65F6\>\<#5FEB\>\<#901F\>\<#8FDB\>\<#5165\>\<#72B6\>\<#6001\>\<#3002\> \<#672C\>\<#539F\>\<#7406\>> \<#9996\>\<#5148\>\<#FF0C\>\<#5047\>\<#8BBE\>\<#6211\>\<#4EEC\>\<#5DF2\>\<#7ECF\>\<#4E86\>\<#89E3\>\<#5230\>\<#FF1A\>\<#4E00\>\<#7BC7\>\<#6587\>\<#6863\>\<#5B9E\>\<#9645\>\<#4E0A\>\<#5C31\>\<#662F\>\<#4E00\>\<#957F\>\<#4E32\>\<#4EE3\>\<#7801\>\<#FF0C\>\<#901A\>\<#8FC7\>\<#6E32\>\<#67D3\>\<#5F15\>\<#64CE\>\<#7684\>\<#52A0\>\<#5DE5\>\<#FF0C\>\<#8FD9\>\<#4E9B\>\<#4EE3\>\<#7801\>\<#5F97\>\<#4EE5\>\<#5C55\>\<#73B0\>\<#5728\>\<#6211\>\<#4EEC\>\<#7B14\>\<#8BB0\>\<#672C\>\<#7684\>\<#5C4F\>\<#5E55\>\<#4E0A\>\<#3002\>\<#8FD9\>\<#4E9B\>\<#4EE3\>\<#7801\>\<#6211\>\<#4EEC\>\<#79F0\>\<#4E4B\>\<#4E3A\> \<#3002\>\<#4E3A\>\<#4E86\>\<#533A\>\<#5206\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#5C06\>\<#5728\>\<#4E2D\>\<#8FD0\>\<#884C\>\<#7684\>\<#4EE3\>\<#7801\>\<#79F0\>\<#4E3A\> \<#3002\> \<#901A\>\<#8FC7\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#5F97\>\<#5230\>\<#4E00\>\<#4E2A\> \<#3002\>\<#6211\>\<#4EEC\>\<#5B9A\>\<#4E49\>\<#7B2C\>\<#4E00\>\<#4E2A\>\<#51FD\>\<#6570\> <\session|scheme|default> <\input|Scheme] > (define (plot l) (stree-\tree l)) ;\<#6309\>\<#4E0B\>\<#56DE\>\<#8F66\>\<#FF0C\>\<#5B9A\>\<#4E49\>\<#8FD9\>\<#4E2A\>\<#51FD\>\<#6570\> \<#4E00\>\<#4E32\>\<#4EE3\>\<#7801\>\<#5BF9\>\<#5E94\>\<#7684\>\<#7ED3\>\<#6784\>\<#662F\>\<#4E00\>\<#68F5\>\<#6811\>\<#FF0C\>\<#8FD9\>\<#91CC\>\<#7684\>tree>\<#5C31\>\<#662F\>\<#5C06\> \<#6811\>\<#8F6C\>\<#53D8\>\<#6210\> \<#6811\>\<#FF0C\>\<#4EE5\>\<#4FBF\>\<#5728\>\<#6587\>\<#6863\>\<#4E2D\>\<#663E\>\<#793A\>\<#3002\>\<#6BD4\>\<#5982\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#77E5\>\<#9053\>\<#7684\>\<#5185\>\<#90E8\>\<#8868\>\<#793A\>\<#5B9E\>\<#9645\>\<#4E0A\>\<#5C31\>\<#662F\>\<#3002\>\<#4E8E\>\<#662F\>\<#FF0C\>\<#5728\>\<#4E2D\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#5C31\>\<#53EF\>\<#4EE5\>\<#901A\>\<#8FC7\> <\session|scheme|default> <\folded-io|Scheme] > (plot `(frac 1 2)) ;\<#5149\>\<#6807\>\<#653E\>\<#5728\>\<#8FD9\>\<#884C\>\<#4E0A\>\<#FF0C\>\<#6309\>\<#4E0B\>\<#56DE\>\<#8F66\>\<#5C31\>\<#80FD\>\<#5F97\>\<#5230\>1/2 <|folded-io> \; \<#8BED\>> \<#4E0A\>\<#9762\>\<#4ECB\>\<#7ECD\>\<#7684\>\<#539F\>\<#8BED\>\<#5B9E\>\<#9645\>\<#4E0A\>\<#7528\>\<#4E8E\>\<#6570\>\<#5B66\>\<#6A21\>\<#5F0F\>\<#FF0C\>\<#4E0B\>\<#9762\>\<#6211\>\<#4EEC\>\<#4ECB\>\<#7ECD\>\<#56FE\>\<#5F62\>\<#6A21\>\<#5F0F\>\<#4E0B\>\<#7684\>\<#539F\>\<#8BED\>\<#3002\>\<#5148\>\<#5168\>\<#90E8\>\<#5217\>\<#51FA\>\<#6765\>\<#FF1A\> <\big-table|>>>>| \<#539F\>\<#8BED\> |<\cell> \<#793A\>\<#4F8B\> |<\cell> \<#529F\>\<#80FD\> >| |<\cell> > |<\cell> \<#5750\>\<#6807\>(0,0)\<#5904\>\<#7684\>\<#4E00\>\<#4E2A\>\<#70B9\> >| |<\cell> (line (point \P0\Q \P0\Q) (point \P0\Q \P1\Q) (point \P1\Q \P1\Q)) > |<\cell> (0,0)>(0,1)>(1,1) \<#7684\>\<#4E00\>\<#6761\>\<#6298\>\<#7EBF\> >| |<\cell> <\code*> (cline (point \P0\Q \P0\Q) (point \P0\Q \P1\Q) (point \P1\Q \P1\Q)) |<\cell> (0,1)\(1,1)\(0,0)> \<#7684\>\<#4E00\>\<#6761\>\<#95ED\>\<#5408\>\<#6298\>\<#7EBF\> >| |<\cell> <\code*> (spline (point \P0\Q \P0\Q) (point \P0\Q \P1\Q) (point \P1\Q \P1\Q)) |<\cell> (0,1)\(1,1)> \<#7684\>\<#4E00\>\<#6761\>\<#6837\>\<#6761\>\<#66F2\>\<#7EBF\> >| |<\cell> <\code*> (cspline (point \P0\Q \P0\Q) (point \P0\Q \P1\Q) (point \P1\Q \P1\Q)) |<\cell> (0,1)\(1,1)\(0,0)> \<#7684\>\<#4E00\>\<#6761\>\<#95ED\>\<#5408\>\<#6837\>\<#6761\>\<#66F2\>\<#7EBF\> >| |<\cell> <\code*> (arc (point \P0\Q \P0\Q) (point \P0\Q \P1\Q) (point \P1\Q \P1\Q)) |<\cell> \<#8FC7\>\<#8FD9\>\<#4E09\>\<#70B9\>\<#7684\>\<#4E00\>\<#6761\>\<#5F27\> >| |<\cell> <\code*> (carc (point \P0\Q \P0\Q) (point \P0\Q \P1\Q) (point \P1\Q \P1\Q)) |<\cell> \<#8FC7\>\<#8FD9\>\<#4E09\>\<#70B9\>\<#7684\>\<#4E00\>\<#4E2A\>\<#5706\> >| |<\cell> <\code*> (text-at (texmacs-markup) (point \P0\Q \P0\Q)) |<\cell> \<#8FD9\>\<#4E2A\>\<#539F\>\<#8BED\>\<#7684\>\<#91CD\>\<#8981\>\<#4E4B\>\<#5904\>\<#5728\>\<#4E8E\>\<#63D0\> \<#4F9B\>\<#4E86\>\<#4E00\>\<#79CD\>\<#5728\>\<#56FE\>\<#7247\>\<#4E0A\>\<#653E\>\<#7F6E\> \<#56FE\>\<#7247\>\<#7684\>\<#65B9\>\<#6CD5\>\<#FF0C\>\<#653E\>\<#5728\>\<#5176\>\<#4E0A\> \<#7684\>\<#56FE\>\<#7247\>\<#6240\>\<#5904\>\<#7684\>\<#4F4D\>\<#7F6E\>\<#662F\>\<#70B9\> (0,0)\<#7684\>\<#53F3\>\<#8FB9\>\<#FF0C\>\<#5176\>\<#7AD6\>\<#76F4\>\<#65B9\>\<#5411\> \<#4E0A\>\<#7684\>\<#5BF9\>\<#79F0\>\<#8F74\>\<#6B63\>\<#597D\>\<#8FC7\>\<#70B9\>(0,0) >>>>> \; \<#63A5\>\<#7740\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#5728\>\<#8FD9\>\<#4E9B\>\<#539F\>\<#8BED\><\footnote> \<#8FD9\>\<#4E9B\>\<#539F\>\<#8BED\>\<#7684\>\<#4EE3\>\<#7801\>\<#5B9E\>\<#73B0\>\<#53EF\>\<#4EE5\>\<#5728\>\<#4E0B\>\<#627E\>\<#5230\> \<#7684\>\<#57FA\>\<#7840\>\<#4E0A\>\<#6784\>\<#5EFA\>\<#4F5C\>\<#56FE\>\<#6240\>\<#9700\>\<#7684\>\<#57FA\>\<#672C\>\<#5143\>\<#7D20\>\<#3002\>\<#9996\>\<#5148\>\<#662F\>\<#70B9\>\<#FF0C\>\<#7EBF\>\<#6BB5\>\<#FF0C\>\<#77E9\>\<#5F62\>\<#548C\>\<#5706\>\<#FF1A\> <\session|scheme|default> <\input|Scheme] > (define (point x y) \ \ ; number-\string\<#7684\>\<#4F5C\>\<#7528\>\<#662F\>\<#5C06\>\<#6811\>\<#53D8\>\<#6210\>\<#6587\>\<#6863\>\<#4E2D\>\<#8868\>\<#793A\>\<#6570\>\<#636E\>\<#7684\>\<#5B57\>\<#7B26\>\<#4E32\> \ \ `(point ,(number-\string x) ,(number-\string y))) <\input|Scheme] > (define (point.x point) \ \ (string-\number (list-ref point 1))) <\input|Scheme] > (define (point.y point) \ \ (string-\number (list-ref point 2))) <\input|Scheme] > (define (line . points) \ \ (cond ((nlist? points) `()) \ \ \ \ \ \ \ \ ((== points '()) `()) \ \ \ \ \ \ \ \ (else `(line ,@points)))) <\input|Scheme] > (define (rectangle leftdown rightup) \ \ (let ((leftup (point (point.x leftdown) (point.y rightup))) \ \ \ \ \ \ \ \ (rightdown (point (point.x rightup) (point.y leftdown)))) \ \ \ \ `(cline ,leftdown ,leftup ,rightup ,rightdown))) <\input|Scheme] > (define (circle center radius) \ \ (let ((p1 (point (- (point.x center) radius) (point.y center))) \ \ \ \ \ \ \ \ (p2 (point (point.x center) (+ (point.y center) radius))) \ \ \ \ \ \ \ \ (p3 (point (+ (point.x center) radius) (point.y center)))) \ \ \ \ `(carc ,p1 ,p2 ,p3))) \<#7528\>\<#7ED8\>\<#5236\>\<#70B9\>\<#3001\>\<#77E9\>\<#5F62\>\<#548C\>\<#5706\>\<#FF1A\> <\session|scheme|default> <\unfolded-io|Scheme] > (plot (point 0 0)) <|unfolded-io> > <\unfolded-io|Scheme] > (plot (rectangle (point 0 0) (point 1 1))) <|unfolded-io> |||>> <\unfolded-io|Scheme] > (plot (circle (point 0 0) 1)) <|unfolded-io> ||>> \<#7EB5\>\<#6837\>\<#5F0F\>\<#5C5E\>\<#6027\>> \<#4F7F\>\<#7528\>\<#539F\>\<#8BED\>\<#53EF\>\<#4EE5\>\<#7ED9\>\<#5BF9\>\<#8C61\>\<#9644\>\<#4E0A\>\<#5404\>\<#79CD\>\<#5C5E\>\<#6027\>\<#3002\>\<#6BD4\>\<#5982\> <\session|scheme|default> <\unfolded-io|Scheme] > (plot `(with color "red" fill-color "#eeeeee" ,(circle (point 0 0) 1))) <|unfolded-io> ||>>> <\unfolded-io|Scheme] > (plot `(with arrow-begin "\gtr\" dash-style "11100" \<#FF0C\>(line (point 0 1) (point 0 0) (point 1 1)))) <|unfolded-io> |dash-style|11100|||>>> <\unfolded-io|Scheme] > (plot `(with point-style "star" ,(point 0 0))) <|unfolded-io> >> \<#6839\>\<#636E\>\<#6E90\>\<#7801\><\footnote> \<#4E2D\>\<#7684\>\<#5B9A\>\<#4E49\>\<#FF0C\>\<#53EF\>\<#4EE5\>\<#603B\>\<#7ED3\>\<#51FA\>\<#FF1A\> |||||| \<#5C5E\>\<#6027\> |<\cell> \<#503C\> |<\cell> \<#4F5C\>\<#7528\> >| color |<\cell> \; \<#989C\>\<#8272\>\<#FF0C\>\<#5982\>\<#FF0C\> |<\cell> \<#5BF9\>\<#8C61\>\<#672C\>\<#8EAB\>\<#7684\>\<#989C\>\<#8272\> >| fill-color |<\cell> \; |<\cell> \<#586B\>\<#5145\>\<#8272\> >| magnify |<\cell> \<#6D6E\>\<#70B9\>\<#6570\>\<#FF0C\>\<#5982\> |<\cell> \<#653E\>\<#5927\>\<#6216\>\<#7F29\>\<#5C0F\>\<#7684\>\<#500D\>\<#7387\> >| opacity |<\cell> \<#767E\>\<#5206\>\<#6BD4\>\<#FF0C\>\<#5982\> |<\cell> \<#900F\>\<#660E\>\<#5EA6\> >| point-style |<\cell> |<\cell> \<#70B9\>\<#7684\>\<#6837\>\<#5F0F\> >| dash-style |<\cell> |<\cell> \<#7EBF\>\<#7684\>\<#6837\>\<#5F0F\> >| arrow-begin |<\cell> less\","\less\\|","\less\\less\",> gtr\","\|\gtr\","\gtr\\gtr\"> \; |<\cell> \<#5F00\>\<#59CB\>\<#5904\>\<#7684\>\<#7BAD\>\<#5934\> >| arrow-end |<\cell> \; |<\cell> \<#7ED3\>\<#675F\>\<#5904\>\<#7684\>\<#7BAD\>\<#5934\> >>>>|\<#90E8\>\<#5206\>\<#5BF9\>\<#8C61\>\<#5C5E\>\<#6027\>> \<#5149\>\<#770B\>\<#8868\>\<#683C\>\<#4E2D\>\<#7684\>\<#603B\>\<#7ED3\>\<#4E0D\>\<#514D\>\<#5931\>\<#4E4B\>\<#76F4\>\<#89C2\>\<#FF0C\>\<#63A8\>\<#8350\>\<#9605\>\<#8BFB\>\<#7F6E\>\<#4F5C\>\<#56FE\>\<#5DE5\>\<#5177\>>\<#8FD9\>\<#7AE0\>\<#4E2D\>\<#6837\>\<#5F0F\>\<#5C5E\>\<#6027\>\<#8BE6\>\<#8FF0\>\<#8FD9\>\<#4E00\>\<#8282\>\<#3002\> \<#4E0B\>\<#9762\>\<#FF0C\>\<#5B9A\>\<#4E49\>\<#4E00\>\<#4E9B\>\<#51FD\>\<#6570\>\<#FF0C\>\<#65B9\>\<#4FBF\>\<#6211\>\<#4EEC\>\<#64CD\>\<#7EB5\>\<#4E0A\>\<#4E00\>\<#8282\>\<#4E2D\>\<#70B9\>\<#3001\>\<#5706\>\<#548C\>\<#77E9\>\<#5F62\>\<#7684\>\<#6837\>\<#5F0F\>\<#3002\>\<#9996\>\<#5148\>\<#662F\>\<#989C\>\<#8272\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#5B9A\>\<#4E49\>\<#6765\>\<#8BBE\>\<#7F6E\>\<#80CC\>\<#666F\>\<#8272\>\<#FF0C\>\<#5B9A\>\<#4E49\>\<#6765\>\<#8BBE\>\<#7F6E\>\<#524D\>\<#666F\>\<#8272\>\<#3002\>\<#7C97\>\<#7CD9\>\<#7684\>\<#60F3\>\<#6CD5\>\<#662F\>\<#5728\>\<#56FE\>\<#5F62\>\<#5BF9\>\<#8C61\>\<#524D\>\<#589E\>\<#52A0\>\<#6807\>\<#7B7E\>\<#4EE5\>\<#53CA\>\<#76F8\>\<#5E94\>\<#7684\>\<#5C5E\>\<#6027\>\<#FF0C\>\<#662F\>\<#5982\>\<#679C\>\<#6211\>\<#4EEC\>\<#5BF9\>\<#540C\>\<#4E00\>\<#4E2A\>\<#5BF9\>\<#8C61\>\<#589E\>\<#52A0\>\<#4E86\>\<#8BB8\>\<#591A\>\<#6B21\>\<#6807\>\<#7B7E\>\<#4F1A\>\<#600E\>\<#6837\>\<#5462\>\<#FF1F\>> \<#8FD9\>\<#4E2A\>\<#95EE\>\<#9898\>\<#53EF\>\<#4EE5\>\<#7528\>\<#51FD\>\<#6570\>\<#89E3\>\<#51B3\>\<#FF0C\>\<#53E6\>\<#5916\>\<#6211\>\<#4EEC\>\<#5B9A\>\<#4E49\>\<#6765\>\<#8BBE\>\<#7F6E\>\<#4EFB\>\<#610F\>\<#5C5E\>\<#6027\>\<#FF1A\> <\session|scheme|default> <\input|Scheme] > (define (merge-with l par val subs) \ \ (cond ((== (length l) 0) '()) \ \ \ \ \ \ \ \ ((== (length l) 1) (append (list par val) l)) \ \ \ \ \ \ \ \ ((== par (car l)) \ \ \ \ \ \ \ \ \ (if subs (set-car! (cdr l) val)) l) \ \ \ \ \ \ \ \ (else\ \ \ \ \ \ \ \ \ \ \ (let ((t (list (car l) (cadr l)))) \ \ \ \ \ \ \ \ \ \ \ \ (append t (merge-with (cddr l) par val subs)))))) <\input|Scheme] > (define (decorate l par val subs) \ \ (cond ((or (nlist? l) (null? l)) '()) \ \ \ \ \ \ \ \ ((list? (car l))\ \ \ \ \ \ \ \ \ \ (append (list (decorate (car l) par val subs))\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (decorate (cdr l) par val subs))) \ \ \ \ \ \ \ \ ((== (car l) 'with)\ \ \ \ \ \ \ \ \ \ (append '(with) (merge-with (cdr l) par val subs))) \ \ \ \ \ \ \ \ ((or (== (car l) 'line) (== (car l) 'cline) (== (car l) 'carc) (== (car l) 'point) (== (car l) 'graphics)) \ \ \ \ \ \ \ \ \ (append '(with) (merge-with (list l) par val subs))))) <\input|Scheme] > (define (fill fig bc) \ \ (decorate fig "fill-color" bc #f)) <\input|Scheme] > (define (force-fill fig bc) \ \ (decorate fig "fill-color" bc #t)) <\input|Scheme] > (define (colorize fig fc) \ \ (decorate fig "color" fc #f)) <\input|Scheme] > (define (force-colorize fig fc) \ \ (decorate fig "color" fc #t)) <\input|Scheme] > (define (arrow-begin fig style) \ \ (decorate fig "arrow-begin" style #f)) <\input|Scheme] > (define (force-arrow-begin fig style) \ \ (decorate fig "arrow-begin" style #t)) <\input|Scheme] > (define (arrow-end fig style) \ \ (decorate fig "arrow-end" style #f)) <\input|Scheme] > (define (force-arrow-end fig style) \ \ (decorate fig "arrow-end" style #t)) <\input|Scheme] > (define (dash-style fig style) \ \ (decorate fig "dash-style" style #f)) <\input|Scheme] > (define (force-dash-style fig style) \ \ (decorate fig "dash-style" style #t)) <\unfolded-io|Scheme] > (plot (dash-style (fill (colorize (circle (point 0 0) 1) "blue") "green") "1111010")) <|unfolded-io> ||>>> <\unfolded-io|Scheme] > (plot (arrow-end (line (point -2 0) (point 0 0) (point 1 1)) "\|\gtr\")) <|unfolded-io> |||>>> \<#5F04\>\<#753B\>\<#5E03\>> \<#524D\>\<#6587\>\<#6240\>\<#4F5C\>\<#4E4B\>\<#56FE\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#90FD\>\<#53EA\>\<#662F\>\<#5C06\>\<#56FE\>\<#5F62\>\<#5BF9\>\<#8C61\>\<#751F\>\<#6210\>\<#51FA\>\<#6765\>\<#6587\>\<#6863\>\<#6811\>\<#653E\>\<#5728\>\<#8FDB\>\<#7A0B\>\<#7684\>\<#8F93\>\<#51FA\>\<#4E0A\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#89C2\>\<#5BDF\>\<#5230\>\<#5750\>\<#6807\>\<#7684\>\<#539F\>\<#70B9\>\<#5C31\>\<#5728\>\<#6587\>\<#6863\>\<#6A2A\>\<#622A\>\<#7EBF\>\<#7684\>\<#4E2D\>\<#70B9\>\<#4E0A\>\<#3002\>\<#7528\>\<#5149\>\<#6807\>\<#9009\>\<#4E2D\>\<#8FD9\>\<#4E2A\>\<#56FE\>\<#6848\>\<#FF0C\>\<#53EF\>\<#4EE5\>\<#770B\>\<#5230\>\<#5DE6\>\<#8FB9\>\<#7684\>\<#4E00\>\<#5927\>\<#622A\>\<#7A7A\>\<#767D\>\<#3002\>\<#5728\>\<#4E0A\>\<#4E00\>\<#8282\>\<#4F5C\>\<#51FA\>\<#7684\>\<#7BAD\>\<#5934\>\<#56FE\>\<#6848\>\<#524D\>\<#8F93\>\<#5165\>\<#4E86\>\<#5355\>\<#8BCD\>left\<#540E\>\<#FF0C\>\<#4F60\>\<#53EF\>\<#4EE5\>\<#6E05\>\<#6670\>\<#5730\>\<#770B\>\<#5230\>\<#8FD9\>\<#4E9B\>\<#7A7A\>\<#767D\>\<#3002\> left|||>> \<#7531\>\<#6B64\>\<#53EF\>\<#4EE5\>\<#77E5\>\<#9053\>\<#FF0C\>\<#5728\>\<#6CA1\>\<#6709\>\<#753B\>\<#5E03\>\<#7684\>\<#60C5\>\<#51B5\>\<#4E0B\>\<#FF0C\>\<#4F1A\>\<#5206\>\<#914D\>\<#4E00\>\<#4E2A\>\<#52A8\>\<#6001\>\<#5927\>\<#5C0F\>\<#7684\>\<#753B\>\<#5E03\>\<#FF0C\>\<#4EE5\>\<#9002\>\<#5E94\>\<#56FE\>\<#5F62\>\<#7684\>\<#5C3A\>\<#5BF8\>\<#3002\> \<#524D\>\<#6587\>\<#4E2D\>\<#7684\>\<#56FE\>\<#50CF\>\<#90FD\>\<#53EA\>\<#662F\>\<#5355\>\<#4E2A\>\<#56FE\>\<#5F62\>\<#5BF9\>\<#8C61\>\<#5728\>\<#9ED8\>\<#8BA4\>\<#753B\>\<#5E03\>\<#4E0A\>\<#7684\>\<#663E\>\<#793A\>\<#3002\>\<#5F15\>\<#5165\>\<#753B\>\<#5E03\>\<#4E4B\>\<#540E\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#5C31\>\<#53EF\>\<#4EE5\>\<#5C06\>\<#591A\>\<#4E2A\>\<#56FE\>\<#5F62\>\<#5BF9\>\<#8C61\>\<#53E0\>\<#52A0\>\<#5728\>\<#540C\>\<#4E00\>\<#4E2A\>\<#753B\>\<#5E03\>\<#4E0A\>\<#3002\>\<#901A\>\<#8FC7\>\<#9006\>\<#5411\>\<#5DE5\>\<#7A0B\><\footnote> \<#65B9\>\<#6CD5\>\<#8BF7\>\<#53C2\>\<#8003\>\<#9644\>\<#5F55\>\<#4E2D\>\<#7684\>\<#5C0F\>\<#8D34\>\<#58EB\> \<#FF0C\>\<#53EF\>\<#4EE5\>\<#4E3E\>\<#51FA\>\<#8FD9\>\<#4E2A\>\<#4F8B\>\<#5B50\>\<#FF1A\> <\session|scheme|default> <\input|Scheme] > (define (graphics . objects) \ \ (cond ((nlist? objects) '(graphics "" "")) \ \ \ \ \ \ \ \ ((== objects '()) '(graphics "" "")) \ \ \ \ \ \ \ \ (else `(graphics "" ,@objects)))) <\input|Scheme] > (define (geometry fig x y) \ \ (decorate fig "gr-geometry" `(tuple "geometry" ,x ,y "center") #f)) <\unfolded-io|Scheme] > (plot (geometry (graphics\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (fill (rectangle (point -2 -1) (point 1 1)) "blue") \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (fill (rectangle (point -1 -1) (point 2 1)) "red") \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (dash-style (line (point 1 -1) (point 1 1)) "11100")) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ "5cm" "3cm")) <|unfolded-io> ||||>>||||>>||>>>>> \<#73B0\>\<#5728\>\<#6211\>\<#4EEC\>\<#5C31\>\<#80FD\>\<#591F\>\<#7528\>\<#51FD\>\<#6570\>\<#FF0C\>\<#5C06\>\<#591A\>\<#4E2A\>\<#56FE\>\<#5F62\>\<#5BF9\>\<#8C61\>\<#53E0\>\<#52A0\>\<#5728\>\<#540C\>\<#4E00\>\<#4E2A\>\<#753B\>\<#5E03\>\<#4E0A\>\<#FF0C\>\<#800C\>\<#4E14\>\<#FF0C\>\<#56FE\>\<#5F62\>\<#5BF9\>\<#8C61\>\<#7684\>\<#987A\>\<#5E8F\>\<#51B3\>\<#5B9A\>\<#4E86\>\<#6E32\>\<#67D3\>\<#7684\>\<#987A\>\<#5E8F\>\<#FF0C\>\<#540E\>\<#8005\>\<#4F1A\>\<#8986\>\<#76D6\>\<#524D\>\<#8005\>\<#3002\>\<#5982\>\<#4E0A\>\<#56FE\>\<#6240\>\<#793A\>\<#FF0C\>\<#865A\>\<#7EBF\>\<#8868\>\<#793A\>\<#539F\>\<#6765\>\<#84DD\>\<#8272\>\<#77E9\>\<#5F62\>\<#7684\>\<#53F3\>\<#8FB9\>\<#754C\>\<#FF0C\>\<#73B0\>\<#5728\>\<#88AB\>\<#7EA2\>\<#8272\>\<#77E9\>\<#5F62\>\<#8986\>\<#76D6\>\<#4E86\>\<#3002\> \<#800C\>\<#51FD\>\<#6570\>\<#53EF\>\<#4EE5\>\<#63A7\>\<#5236\>\<#753B\>\<#5E03\>\<#7684\>\<#5927\>\<#5C0F\>\<#3002\>\<#6CE8\>\<#610F\>\<#FF0C\>\<#524D\>\<#6587\>\<#4E2D\>\<#90FD\>\<#6CA1\>\<#6709\>\<#8BA8\>\<#8BBA\>\<#957F\>\<#5EA6\>\<#5355\>\<#4F4D\>\<#8FD9\>\<#4E00\>\<#56E0\>\<#7D20\>\<#3002\>\<#4F46\>\<#5B9E\>\<#9645\>\<#4E0A\>\<#524D\>\<#6587\>\<#4E2D\>\<#6240\>\<#6709\>\<#7684\>\<#5750\>\<#6807\>\<#7684\>\<#5355\>\<#4F4D\>\<#90FD\>\<#662F\>\<#3002\>\<#6240\>\<#4EE5\>\<#5728\>\<#6307\>\<#5B9A\>\<#753B\>\<#5E03\>\<#7684\>\<#5BBD\>\<#5EA6\>\<#548C\>\<#9AD8\>\<#5EA6\>\<#7684\>\<#65F6\>\<#5019\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#9700\>\<#8981\>\<#52A0\>\<#4E0A\>\<#8FD9\>\<#4E2A\>\<#5355\>\<#4F4D\>\<#FF0C\>\<#56E0\>\<#4E3A\>\<#8FD9\>\<#91CC\>\<#7684\>\<#9ED8\>\<#8BA4\>\<#5355\>\<#4F4D\>\<#4E0D\>\<#662F\>\<#3002\> \<#53E6\>\<#5916\>\<#FF0C\>\<#6211\>\<#4EEC\>\<#8FD8\>\<#53EF\>\<#4EE5\>\<#526A\>\<#88C1\>\<#753B\>\<#5E03\>\<#FF0C\>\<#5C3D\>\<#53EF\>\<#80FD\>\<#51CF\>\<#5C11\>\<#753B\>\<#5E03\>\<#5468\>\<#56F4\>\<#7684\>\<#7A7A\>\<#767D\>\<#3002\> <\session|scheme|default> <\input|Scheme] > (define (crop fig) \ \ (decorate fig "gr-auto-crop" "true" #f)) <\unfolded-io|Scheme] > (plot (crop (graphics\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (fill (rectangle (point -2 -1) (point 1 1)) "blue") \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (fill (rectangle (point -1 -1) (point 2 1)) "red") \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (dash-style (line (point 1 -1) (point 1 1)) "11100")))) <|unfolded-io> |||>>||||>>||>>>>> \<#9009\>\<#4E2D\>\<#6700\>\<#8FD1\>\<#7684\>\<#8FD9\>\<#4E24\>\<#4E2A\>\<#4E00\>\<#6837\>\<#7684\>\<#56FE\>\<#50CF\>\<#FF0C\>\<#4F60\>\<#5C31\>\<#53EF\>\<#4EE5\>\<#770B\>\<#5230\>\<#533A\>\<#522B\>\<#3002\> \<#5ECA\>> \<#8FD9\>\<#4E00\>\<#7AE0\>\<#4E3B\>\<#8981\>\<#5229\>\<#7528\>\<#524D\>\<#6587\>\<#5B9A\>\<#4E49\>\<#597D\>\<#7684\>\<#51FD\>\<#6570\>\<#FF0C\>\<#7ED8\>\<#5236\>\<#5404\>\<#79CD\>\<#5404\>\<#6837\>\<#6709\>\<#8DA3\>\<#7684\>\<#56FE\>\<#6848\>\<#3002\> \<#521A\>\<#77F3\>\<#56FE\>\<#6848\>> \<#5C06\>\<#534A\>\<#5F84\>\<#4E3A\>R\<#7684\>\<#5706\>\<#5468\>n\<#7B49\>\<#5206\>\<#FF0C\>\<#7136\>\<#540E\>\<#7528\>\<#76F4\>\<#7EBF\>\<#5C06\>\<#5404\>\<#4E2A\>\<#7B49\>\<#5206\>\<#70B9\>\<#4E24\>\<#4E24\>\<#76F8\>\<#8FDE\>\<#3002\> \<#73AF\>\<#56FE\>\<#6848\>> \<#5C06\>\<#534A\>\<#5F84\>\<#4E3A\>>\<#7684\>\<#5706\>\<#5468\>n\<#7B49\>\<#5206\>\<#FF0C\>\<#7136\>\<#540E\>\<#4EE5\>\<#6BCF\>\<#4E2A\>\<#7B49\>\<#5206\>\<#70B9\>\<#4E3A\>\<#5706\>\<#5FC3\>\<#FF0C\>\<#4EE5\>>\<#4E3A\>\<#534A\>\<#5F84\>\<#753B\>n\<#4E2A\>\<#5706\>\<#3002\> \<#5F62\>\<#56FE\>\<#6848\>> \<#810F\>\<#5F62\>\<#56FE\>\<#6848\>> \<#5F62\>\<#56FE\>\<#6848\>> > > and triangle<\footnote> > > \<#5F55\>> \<#8D34\>\<#58EB\>> \<#672C\>\<#6587\>\<#6240\>\<#6709\>\<#7684\>\<#8868\>\<#8FBE\>\<#5F0F\>\<#6C42\>\<#503C\>> \<#5F53\>\<#4F60\>\<#521A\>\<#521A\>\<#7528\>\<#7F16\>\<#8F91\>\<#5668\>\<#6253\>\<#5F00\>\<#672C\>\<#6587\>\<#65F6\>\<#FF0C\>\<#5982\>\<#679C\>\<#4F60\>\<#8DF3\>\<#5230\>\<#4E2D\>\<#95F4\>\<#7684\>\<#67D0\>\<#8282\>\<#53BB\>\<#6267\>\<#884C\>\<#4EE3\>\<#7801\>\<#FF0C\>\<#5F88\>\<#6709\>\<#53EF\>\<#80FD\>\<#4F1A\>\<#51FA\>\<#9519\>\<#FF0C\>\<#56E0\>\<#4E3A\>\<#5F53\>\<#524D\>\<#7684\>\<#4EE3\>\<#7801\>\<#5F88\>\<#6709\>\<#53EF\>\<#80FD\>\<#4F9D\>\<#8D56\>\<#4E0A\>\<#524D\>\<#6587\>\<#4E2D\>\<#5DF2\>\<#7ECF\>\<#51FA\>\<#73B0\>\<#8FC7\>\<#7684\>\<#51FD\>\<#6570\>\<#548C\>\<#53D8\>\<#91CF\>\<#3002\>\<#800C\>\<#5C06\>\<#524D\>\<#6587\>\<#4E2D\>\<#6240\>\<#6709\>\<#7684\>\<#4EE3\>\<#7801\>\<#90FD\>\<#6267\>\<#884C\>\<#4E00\>\<#904D\>\<#8FD9\>\<#4E2A\>\<#64CD\>\<#4F5C\>\<#5B9E\>\<#9645\>\<#4E0A\>\<#975E\>\<#5E38\>\<#7E41\>\<#7410\>\<#3002\>\<#542F\>\<#7528\>\<#5177\>|\<#5F00\>\<#53D1\>\<#83DC\>\<#5355\>>\<#FF0C\>\<#5C06\>\<#5149\>\<#6807\>\<#7F6E\>\<#4E8E\>\<#672C\>\<#6587\>\<#7684\>\<#67D0\>\<#4E2A\>\<#8FDB\>\<#7A0B\>\<#4E2D\>\<#FF0C\>\<#7136\>\<#540E\>\<#5C31\>\<#53EF\>\<#4EE5\>\<#5BFC\>\<#51FA\>\<#6240\>\<#6709\>\<#7684\>\<#4EE3\>\<#7801\>\<#5230\>\<#5355\>\<#4E2A\>\<#6587\>\<#4EF6\>\<#4E2D\>\<#3002\>\<#7136\>\<#540E\>\<#5230\>|\<#65E0\>\<#6807\>\<#9898\>\<#6587\>\<#4EF6\>>\<#FF0C\>\<#5F00\>\<#542F\>\<#4E00\>\<#4E2A\>\<#8FDB\>\<#7A0B\>\<#5E76\>\<#8F93\>\<#5165\>\<#FF0C\>\<#56DE\>\<#8F66\>\<#4E4B\>\<#540E\>\<#FF0C\>\<#6587\>\<#4E2D\>\<#6240\>\<#6709\>\<#7684\>\<#4EE3\>\<#7801\>\<#5C31\>\<#90FD\>\<#88AB\>\<#52A0\>\<#8F7D\>\<#4E86\>\<#3002\> \<#5411\>\<#5DE5\>\<#7A0B\>> \<#8003\>\<#8D44\>\<#6599\>> <\itemize> A TeXmacs graphics tutorial<\footnote> , by Henri Lesourd. Turtle schemes<\footnote> , by Ana Cañizares García and Miguel de Benito Delgado Fractal turtles<\footnote> , by Ana Cañizares García and Miguel de Benito Delgado \; <\initial> <\collection> <\references> <\collection> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > <\auxiliary> <\collection> <\associate|idx> |\<#63D2\>\<#5165\>>||\<#4F1A\>\<#8BDD\>>||Scheme>>|> |\<#5E2E\>\<#52A9\>>||\<#7528\>\<#6237\>\<#624B\>\<#518C\>>||\<#5185\>\<#7F6E\>\<#4F5C\>\<#56FE\>\<#5DE5\>\<#5177\>>>|> |\<#5DE5\>\<#5177\>>||\<#5F00\>\<#53D1\>\<#83DC\>\<#5355\>>>|> |\<#5F00\>\<#53D1\>\<#8005\>>||Export Sessions...>>|> |\<#8F6C\>\<#5230\>>||\<#65E0\>\<#6807\>\<#9898\>\<#6587\>\<#4EF6\>>>|> <\associate|table> |1>|> \; |> |2>||\<#90E8\>\<#5206\>\<#5BF9\>\<#8C61\>\<#5C5E\>\<#6027\>>|> <\associate|toc> 1\<#7B80\>\<#4ECB\> |.>>>>|> 2\<#57FA\>\<#672C\>\<#539F\>\<#7406\> |.>>>>|> |2.1\<#539F\>\<#8BED\> |.>>>>|> > |2.2\<#64CD\>\<#7EB5\>\<#6837\>\<#5F0F\>\<#5C5E\>\<#6027\> |.>>>>|> > |2.3\<#6446\>\<#5F04\>\<#753B\>\<#5E03\> |.>>>>|> > 3\<#753B\>\<#5ECA\> |.>>>>|> |3.1\<#91D1\>\<#521A\>\<#77F3\>\<#56FE\>\<#6848\> |.>>>>|> > |3.2\<#5706\>\<#73AF\>\<#56FE\>\<#6848\> |.>>>>|> > |3.3\<#80BE\>\<#5F62\>\<#56FE\>\<#6848\> |.>>>>|> > |3.4\<#5FC3\>\<#810F\>\<#5F62\>\<#56FE\>\<#6848\> |.>>>>|> > |3.5\<#5206\>\<#5F62\>\<#56FE\>\<#6848\> |.>>>>|> > |3.5.1\<#6811\> |.>>>>|> > |3.5.2Koch snowflake|7><\float|footnote|> ||par-left||par-right||font-shape||dummy||dummy||<\surround|||>|7>. ||7>>> ||>||language||https://en.wikipedia.org/wiki/Koch_snowflake>> >> |>> |.>>>>|> > |3.5.3Sierpinski carpet|10><\float|footnote|> ||par-left||par-right||font-shape||dummy||dummy||<\surround|||>|10>. ||10>>> ||>||language||https://en.wikipedia.org/wiki/Sierpinski_carpet>> >> |>> and triangle|11><\float|footnote|> ||par-left||par-right||font-shape||dummy||dummy||<\surround|||>|11>. ||11>>> ||>||language||https://en.wikipedia.org/wiki/Sierpinski_triangle>> >> |>> |.>>>>|> > |3.5.4Mandelbrot set|16><\float|footnote|> ||par-left||par-right||font-shape||dummy||dummy||<\surround|||>|16>. ||16>>> ||>||language||https://en.wikipedia.org/wiki/Mandelbrot_set>> >> |>> |.>>>>|> > 4\<#9644\>\<#5F55\> |.>>>>|> |4.1\<#5C0F\>\<#8D34\>\<#58EB\> |.>>>>|> > |4.1.1\<#5BF9\>\<#672C\>\<#6587\>\<#6240\>\<#6709\>\<#7684\>|Scheme>\<#8868\>\<#8FBE\>\<#5F0F\>\<#6C42\>\<#503C\> |.>>>>|> > |4.1.2\<#9006\>\<#5411\>\<#5DE5\>\<#7A0B\> |.>>>>|> > |4.2\<#53C2\>\<#8003\>\<#8D44\>\<#6599\> |.>>>>|> >