mirror of https://gitee.com/XmacsLabs/planet.git
181 lines
5.0 KiB
Plaintext
181 lines
5.0 KiB
Plaintext
|
<TeXmacs|2.1.1>
|
||
|
|
||
|
<style|beamer>
|
||
|
|
||
|
<\body>
|
||
|
<screens|<\shown>
|
||
|
<doc-data|<doc-title|Ordinary Differential
|
||
|
Equations>|<doc-author|<author-data|<author-name|Yuliang Wang>>>>
|
||
|
|
||
|
<subsection|Motivation>
|
||
|
|
||
|
Suppose we deposite <math|u<rsub|0>> in a bank account, and the annual
|
||
|
interest rate is <math|r>. After <math|t> years,
|
||
|
|
||
|
<\enumerate>
|
||
|
<item>If the interest is compounded annualy, then the balance is
|
||
|
|
||
|
<\equation*>
|
||
|
u<around*|(|t|)>=u<rsub|0>*<around*|(|1+r|)><rsup|t>.
|
||
|
</equation*>
|
||
|
|
||
|
<item>If the interest is compounded monthly, then the balance is
|
||
|
|
||
|
<\equation*>
|
||
|
u<around*|(|t|)>=u<rsub|0>*<around*|(|1+<frac|r|12>|)><rsup|12*t>
|
||
|
</equation*>
|
||
|
|
||
|
<item>In general, if the interest is compounded <math|m> times a year,
|
||
|
then the balance is
|
||
|
|
||
|
<\equation*>
|
||
|
u<around*|(|t|)>=u<rsub|0>*<around*|(|1+<frac|r|m>|)><rsup|m*t>.
|
||
|
</equation*>
|
||
|
|
||
|
<item>Taking the limit as <math|m\<rightarrow\>\<infty\>>, then for any
|
||
|
fixed <math|t>, we have
|
||
|
|
||
|
<\equation*>
|
||
|
u<around*|(|t|)>=lim<rsub|m\<rightarrow\>\<infty\>><around*|(|1+<frac|r|m>|)><rsup|m*t>=lim<rsub|m\<rightarrow\>\<infty\>><with|color|red|<around*|(|1+<frac|r|m>|)>><rsup|<with|color|red|<frac|m|r>>*r*t>=e<rsup|r*t>.
|
||
|
</equation*>
|
||
|
</enumerate>
|
||
|
|
||
|
But we can obtain the same result by using a differential equation:
|
||
|
|
||
|
<\equation>
|
||
|
<with|color|blue|u<rprime|'><around*|(|t|)>=u<around*|(|t|)>*r>.
|
||
|
</equation>
|
||
|
|
||
|
We can solve it later and obtain the same result.
|
||
|
|
||
|
<\definition>
|
||
|
A <strong|ordinary differential equation> (ODE) about a function
|
||
|
<math|u<around*|(|t|)>> is an equation involving
|
||
|
<math|u<around*|(|t|)>> and its derivatives.
|
||
|
</definition>
|
||
|
|
||
|
<subsection|Classification of ODE>
|
||
|
|
||
|
Any ODE can be written in the abstract form
|
||
|
|
||
|
<\equation>
|
||
|
F<around*|(|u,u<rprime|'>,u<rprime|''>,\<ldots\>,u<rsup|<around*|(|n|)>>|)>=0.
|
||
|
</equation>
|
||
|
|
||
|
For example, Eq. (1) can be written as
|
||
|
|
||
|
<\equation*>
|
||
|
F<around*|(|u,u<rprime|'>|)>=r*u-u<rprime|'>=0.
|
||
|
</equation*>
|
||
|
|
||
|
In Eq. (2), <math|n> is the <strong|order> of the equation, i.e. the
|
||
|
order is the highest order derivative of <math|u> in the equation.\
|
||
|
|
||
|
So Eq. (1) is an ODE of order 1.\
|
||
|
|
||
|
If <math|F> is linear in terms of <math|u,u<rprime|'>,\<ldots\>,u<rsup|<around*|(|n|)>>>,
|
||
|
then the equation is called <strong|linear>. Otherwise it's called
|
||
|
<strong|nonlinear>. The general form of a linear ODE is
|
||
|
|
||
|
<\equation*>
|
||
|
a<rsub|n><around*|(|t|)>*u<rsup|<around*|(|n|)>>+a<rsub|n-1><around*|(|t|)>*u<rsup|<around*|(|n-1|)>>+\<cdots\>+a<rsub|1><around*|(|t|)>*u+a<rsub|0><around*|(|t|)>=0.
|
||
|
</equation*>
|
||
|
|
||
|
So Eq. (1) is linear. Examples of nonlinear equations:
|
||
|
|
||
|
<\equation*>
|
||
|
u<rprime|'>-u<rsup|2>=5,<space|1em>u*u<rprime|'>+5x=e<rsup|x>,<space|1em>u<rprime|'>=sin
|
||
|
u
|
||
|
</equation*>
|
||
|
|
||
|
<subsection|Solutions of an ODE>
|
||
|
|
||
|
A solution of an ODE
|
||
|
|
||
|
<\equation*>
|
||
|
F<around*|(|u,u<rprime|'>,u<rprime|''>,\<ldots\>,u<rsup|<around*|(|n|)>>|)>=0
|
||
|
</equation*>
|
||
|
|
||
|
is a function <math|u=\<phi\><around*|(|t|)>> satisfying the equation,
|
||
|
i.e.
|
||
|
|
||
|
<\equation*>
|
||
|
F<around*|(|\<phi\>,\<phi\><rprime|'>,\<phi\><rprime|''>,\<ldots\>,\<phi\><rsup|<around*|(|n|)>>|)><around*|(|t|)>=0.
|
||
|
</equation*>
|
||
|
|
||
|
<\example>
|
||
|
Can you give solutions of
|
||
|
|
||
|
<\equation*>
|
||
|
u<rprime|'>=2*u
|
||
|
</equation*>
|
||
|
|
||
|
possible solution: <math|u=e<rsup|2*t>>, in fact,
|
||
|
<math|u=c*e<rsup|2*t>> is a solution for any constant <math|c>.
|
||
|
</example>
|
||
|
|
||
|
<\example>
|
||
|
Can you give solutions of
|
||
|
|
||
|
<\equation*>
|
||
|
u<rprime|''>+4*u=0
|
||
|
</equation*>
|
||
|
|
||
|
A possible solution is <math|u=sin 2*t>, another solution is
|
||
|
<math|u<around*|(|t|)>=cos*2t.> In fact, any function
|
||
|
|
||
|
<\equation*>
|
||
|
u=a*sin 2*t+b*cos 2*t
|
||
|
</equation*>
|
||
|
</example>
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
|
||
|
\;
|
||
|
</shown>>
|
||
|
</body>
|
||
|
|
||
|
<\initial>
|
||
|
<\collection>
|
||
|
<associate|magnification|2>
|
||
|
<associate|page-medium|papyrus>
|
||
|
</collection>
|
||
|
</initial>
|
||
|
|
||
|
<\references>
|
||
|
<\collection>
|
||
|
<associate|auto-1|<tuple|1|?>>
|
||
|
<associate|auto-2|<tuple|2|?>>
|
||
|
<associate|auto-3|<tuple|3|?>>
|
||
|
</collection>
|
||
|
</references>
|
||
|
|
||
|
<\auxiliary>
|
||
|
<\collection>
|
||
|
<\associate|toc>
|
||
|
<with|par-left|<quote|1tab>|1<space|2spc>Motivation
|
||
|
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
|
||
|
<no-break><pageref|auto-1>>
|
||
|
|
||
|
<with|par-left|<quote|1tab>|2<space|2spc>Classification of ODE
|
||
|
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
|
||
|
<no-break><pageref|auto-2>>
|
||
|
|
||
|
<with|par-left|<quote|1tab>|3<space|2spc>Solutions of an ODE
|
||
|
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
|
||
|
<no-break><pageref|auto-3>>
|
||
|
</associate>
|
||
|
</collection>
|
||
|
</auxiliary>
|