1
0
Fork 0
planet/高考数学/2022年全国高考乙卷数学理科试题.tm

178 lines
78 KiB
Plaintext
Raw Normal View History

<TeXmacs|2.1.2>
<style|<tuple|exam|std-latex|chinese>>
<\body>
<doc-data|<doc-title|2022\<#5E74\>\<#6570\>\<#5B66\>\<#5168\>\<#56FD\>\<#4E59\>\<#5377\>\<#FF08\>\<#7406\>\<#79D1\>\<#FF09\>>>
\<#4E00\>\<#3001\>\<#5355\>\<#9009\>\<#9898\>\<#FF08\>\<#672C\>\<#5927\>\<#9898\>\<#5171\>12\<#5C0F\>\<#9898\>\<#FF0C\>\<#5171\>60\<#5206\>\<#FF09\>
<\enumerate-numeric>
<item>\<#8BBE\>\<#5168\>\<#96C6\><math|U=<around|{|1,2,3,4,5|}>>\<#FF0C\>\<#96C6\>\<#5408\><math|M>\<#6EE1\>\<#8DB3\><math|\<complement\><rsub|U>*M=<around|{|1,3|}>>\<#FF0C\>\<#5219\>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|2\<in\>M>>|<cell|B. <math|3\<in\>M>>|<cell|C.
<math|4*\<nin\>M>>|<cell|D. <math|5*\<nin\>M>>>>>>
<item>\<#5DF2\>\<#77E5\><math|z=1-2*i>\<#FF0C\>\<#4E14\><math|z+a*<wide|z|\<bar\>>+b=0>\<#FF0C\>\<#5176\>\<#4E2D\><math|a>\<#FF0C\><math|b>\<#4E3A\>\<#5B9E\>\<#6570\>\<#FF0C\>\<#5219\>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<cwith|2|2|1|2|cell-valign|c>|<cwith|2|2|1|2|cell-halign|l>|<table|<row|<cell|A.
<math|a=1>\<#FF0C\><math|b=-2>>|<cell|B.
<math|a=-1>\<#FF0C\><math|b=2>>>|<row|<cell|C.
<math|a=1>\<#FF0C\><math|b=2>>|<cell|D.
<math|a=-1>\<#FF0C\><math|b=-2>>>>>>
<item>\<#5DF2\>\<#77E5\>\<#5411\>\<#91CF\><math|a>\<#FF0C\><math|b>\<#6EE1\>\<#8DB3\><math|<around|\||<wide|a|\<wide-varrightarrow\>>|\|>=1>\<#FF0C\><math|<around|\||<wide|b|\<wide-varrightarrow\>>|\|>=<sqrt|3>>\<#FF0C\><math|<around|\||<wide|a|\<wide-varrightarrow\>>-2*<wide|b|\<wide-varrightarrow\>>|\|>=3>\<#FF0C\>\<#5219\><math|<wide|a|\<wide-varrightarrow\>>*\<cdot\>*<wide|b|\<wide-varrightarrow\>>=>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|-2>>|<cell|B. <math|-1>>|<cell|C. <math|1>>|<cell|D. <math|2>>>>>>
<item>\<#5AE6\>\<#5A25\>\<#4E8C\>\<#53F7\>\<#536B\>\<#661F\>\<#5728\>\<#5B8C\>\<#6210\>\<#63A2\>\<#6708\>\<#4EFB\>\<#52A1\>\<#540E\>\<#FF0C\>\<#7EE7\>\<#7EED\>\<#8FDB\>\<#884C\>\<#6DF1\>\<#7A7A\>\<#63A2\>\<#6D4B\>\<#FF0C\>\<#6210\>\<#4E3A\>\<#6211\>\<#56FD\>\<#7B2C\>\<#4E00\>\<#9897\>\<#73AF\>\<#7ED5\>\<#592A\>\<#9633\>\<#98DE\>\<#884C\>\<#7684\>\<#4EBA\>\<#9020\>\<#884C\>\<#661F\>.\<#4E3A\>\<#7814\>\<#7A76\>\<#5AE6\>\<#5A25\>\<#4E8C\>\<#53F7\>\<#7ED5\>\<#65E5\>\<#5468\>\<#671F\>\<#4E0E\>\<#5730\>\<#7403\>\<#7ED5\>\<#65E5\>\<#5468\>\<#671F\>\<#7684\>\<#6BD4\>\<#503C\>\<#FF0C\>\<#7528\>\<#5230\>\<#6570\>\<#5217\><math|<around|{|b<rsub|n>|}>:b<rsub|1>=1+<frac|1|\<alpha\><rsub|1>>>\<#FF0C\><math|b<rsub|2>=1+<frac|1|\<alpha\><rsub|1>+<frac|1|\<alpha\><rsub|2>>>>\<#FF0C\><math|b<rsub|3>=1+<frac|1|\<alpha\><rsub|1>+<frac|1|\<alpha\><rsub|2>+<frac|1|\<alpha\><rsub|3>>>>>\<#FF0C\>\<cdots\>\<#FF0C\>\<#4F9D\>\<#6B64\>\<#7C7B\>\<#63A8\>\<#FF0C\>\<#5176\>\<#4E2D\><math|\<alpha\><rsub|k>\<in\>N<rsup|\<ast\>>(k=1,2,\<cdots\>)>.\<#5219\>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|b<rsub|1>\<less\>b<rsub|5>>>|<cell|B.
<math|b<rsub|3>\<less\>b<rsub|s>>>|<cell|C.
<math|b<rsub|6>\<less\>b<rsub|2>>>|<cell|D.
<math|b<rsub|4>\<less\>b<rsub|7>>>>>>>
<item>\<#8BBE\><math|F>\<#4E3A\>\<#629B\>\<#7269\>\<#7EBF\><math|C:y<rsup|2>=4*x>\<#7684\>\<#7126\>\<#70B9\>\<#FF0C\>\<#70B9\><math|A>\<#5728\><math|C>\<#4E0A\>\<#FF0C\>\<#70B9\><math|B*<around|(|3,0|)>>\<#FF0C\>\<#82E5\><math|<around|\||A*F|\|>=<around|\||B*F|\|>>\<#FF0C\>\<#5219\><math|<around|\||A*B|\|>=>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|2>>|<cell|B. <math|2*<sqrt|2>>>|<cell|C. <math|3>>|<cell|D.
<math|3*<sqrt|2>>>>>>>
<item>\<#6267\>\<#884C\>\<#53F3\>\<#8FB9\>\<#7684\>\<#7A0B\>\<#5E8F\>\<#6846\>\<#56FE\>\<#FF0C\>\<#8F93\>\<#51FA\>\<#7684\><math|n=>
<image|<tuple|<#89504E470D0A1A0A0000000D49484452000001110000015E08020000002DF8BC60000000097048597300000EC400000EC401952B0E1B0000200049444154789CED9D7720956DFCFF6F876C22D1F048514F8386BD52444BBBA824C44143BBA7D4D35E8FB68A32CF41A4818A121232B2B255A4EC91913DCFBC7F7FDCDFEFF99E1F3A399CED7AFD75AEEB5CF7757DEE3A6FD7FE7CF86018860000C0B041B1DB000080CB009A0100E803680600A00FA01900803E80660000FA1060B701639AE2E2E2808080F4F4F4C6C6460281C0CAA6A5A5A567CC98B179F3660B0B8B71E3C6B1B2696E870FAC35B3051886CF9D3BF7E8D1A383070F1A1919494B4BB3D8000281505A5A1A1010F0F5EBD7D0D050555555161BC0BD00CDB087DDBB77373636060505494848B0D7929898182727A7F8F8F859B366B1D7126E0168860DBC7FFFFEC08103797979C2C2C2ECB6058220E8C99327EEEEEE696969EC36843B006B006CE0C68D1BFFFDF71F6B04432412FF58C6D2D2B2BFBF3F23238305F6F0004033AC864C267FFAF4C9CCCC6CC435C030FCE1C387C1F957AF5E3D7BF62C994CA6CEB4B6B6767575FDE36862CB962D8989892336694C01D6CD584D5757978484849090D090DFF6F4F4787A7A4210242E2E8EC7E3F178BCB8B838F2150CC31D1D1D5252528585858F1F3F767373B3B7B7A77EF6E3C78FAB57AF46A150D4B54546463A3939F1F1F1D1B66AC28409555555A37AB13103D00C67212626B66BD72E292929010181B0B0307F7FFFA8A828E4ABEEEE6E1919191C0E0741D0C3870F073C08C3704E4E0EA2370A2F5FBE343333333636668DF163043036E338264E9C282040F7DFB2CACA4A49494945454518860B0B0B21088261D8C7C7E7D6AD5B10047DFDFAF5F6EDDB241289F1E68E3D403FC3F5BC7BF72E3636B6AEAE4E5656D6C3C3E3E7CF9FF7EEDD2B2929C9CCCC5CB56A95A2A2220441F3E6CD4B4E4E5EBE7CF9F3E7CF274E9CC86E93B91BD0CF702B9469FD8A152B6EDFBE2D262676E8D0A1FDFBF7EBEAEA1A1919B5B4B43C7CF8D0DEDEBEB6B6F6FBF7EF454545EAEAEA55555568349ABD66F30040335C494444C4CA952B7B7A7A90240CC3898989AB56AD8220A8B0B050434323333333212161EDDAB577EEDC494C4CACABAB1B376EDCE5CB971B1B1BD96A382F00C6661C447F7FFFF9F3E7A5A4A490A334595959B5B5B55E5E5E946F89442292ECEAEA5AB66CD9A74F9F8C8C8C20082A29295154541C3F7E3C0441191919870E1D323636D6D1D159B8702175FD0B172ED4D5D565F14BF11E40331C84B0B0F0F5EBD729493E3E3E1289B467CF1E24D9DDDDEDE2E2424952F3EEDDBBB56BD74210442412B3B2B2747575F9F9F94B4B4B25242444454591329D9D9D4F9E3CF9F7DF7F99FF1E3C0ED00CE7525656367BF6ECE1948C89897173738320282D2D6DFEFCF9C8964E4444447272F2D2A54B91324D4D4DEEEEEE4E4E4E53A64C619ECD6301A019CE253D3DFDDAB56BC329696666E6EBEB6B6C6C1C1616666E6E8E640A0808E8E8E850929595950F1E3C0082193D40331C4A6565654B4B8B9E9EDE700A1F38700087C3DDB97327303070F2E4C9FDFDFDC2C2C2D4070210C0795C8600D6CD38947FFFFDF7D6AD5BD4BF7B32994CE3472F2424545959E9EAEAFAFEFDFBF5EBD70F590668862100CD70225E5E5EF3E7CF1F708E9344221189C4DFFDEE8383835128948B8B4B7474746767270441300CD7D7D797FC2F656565E01C004300633356232121D1D5D585C3E17E774C138BC58E1B37EED4A95303F2F1783C0CC3442271F055E457AF5E1517173F78F0808F8F4F5656363E3E1E82202291D8DEDEDED0D08094696E6EA6717DBAB5B51559AA06FC11A019568342A1B4B4B4DEBE7DBB69D3A6C1DF3E7FFE5C5F5F7FCE9C3983BFE2E3E33B71E2C4E013CAD9D9D9A2A2A257AF5EA5E48889894110646060606C6C4C59796B6969F99D4A21080A0F0F1F7CEE133024E09E261B888F8FDFBF7F3F47DDD3F4F0F0F8F8F123BB0DE10E8066D8C3DEBD7B7FFEFCC909FE00626363117F003367CE64AF25DC02D00C7B8061F8CC9933C1C1C1870E1D5ABC78B18888088B0D2093C9B5B5B5582CB6B8B838242464D1A2452C36807B019A6127DFBE7DF3F7F74F4F4FEFEEEE1EC1E3FDFDFDEDEDED93274F1EC1B3FCFCFC8A8A8A887FB3115CD719CB00CD7031A9A9A9AEAEAE948B9C00D600F6670000FA009A0100E803680600A00FA01900803E80660000FA009A0100E80368865BF9F2E5CBB76FDF3A3A3A7272725A5B5BD96DCE1802ECCF702BEBD6AD7BF3E60DF2F9E3C78FFAFAFAECB567EC00FA196E852212414141757575F61A33A6009AE1560C0C0C900F1A1A1A1C723E7A8C0034C3AD686A6A2297CFC0A88CC500CD702BA2A2A2C861644A8703600D40335C0CA216A019160334C3C5181818282B2BCBC9C9B1DB90B105D00C17636060003A19D6C39BFB33CF9F3F6F6F6F67B715ACE0CB972F2A2A2AECB6829BD0D4D41CE5D23C0F6A262C2CECE2C58BA309F2CA45C030FCC758990004248E556161E12847B3BC76A9B5A6A6E6C89123F1F1F17FFFFD37BB6D0170107D7D7D9A9A9A010101A39FFEF1543F432291962D5B666B6B3B20A03100B077EF5E2121A1BB77EF8EBE2A9EEA676EDCB8212B2B0B040318C0EBD7AFD3D2D2B2B2B218521BEFF433595959DBB76FCFC9C94182840100083F7FFED4D1D189898999376F1E432AE491B5E6EEEE6E6B6B6B7F7F7F20180035300CDBDADA9E3A758A518281784633FBF7EFDFBC793325A6170080E0E6E6262424346440C511C30BF39967CF9E7DFDFAD5D7D797DD8600388BFCFCFC7BF7EE6567673376399EEBFB99AAAAAA7FFEF927242
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|3>>|<cell|B. <math|4>>|<cell|C. <math|5>>|<cell|D. <math|6>>>>>>
<item>\<#5728\>\<#6B63\>\<#65B9\>\<#4F53\><math|A*B*C*D-A<rsub|1>*B<rsub|1>*C<rsub|1>*D<rsub|1>>\<#4E2D\>\<#FF0C\><math|E>\<#FF0C\><math|F>\<#5206\>\<#522B\>\<#4E3A\><math|A*B>\<#FF0C\><math|B*C>\<#7684\>\<#4E2D\>\<#70B9\>\<#FF0C\>\<#5219\>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<cwith|2|2|1|2|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|-1|1|-1|cell-halign|l>|<table|<row|<cell|A.
\<#5E73\>\<#9762\><math|B<rsub|1>*E*F*\<bot\>>\<#5E73\>\<#9762\><math|B*D*D<rsub|1>>>|<cell|B.
\<#5E73\>\<#9762\><math|B<rsub|1>*E*F*\<bot\>>\<#5E73\>\<#9762\><math|A<rsub|1>*B*D>>>|<row|<cell|C.
\<#5E73\>\<#9762\><math|B<rsub|1>*E*F//>\<#5E73\>\<#9762\><math|A<rsub|1>*A*C>>|<cell|D.
\<#5E73\>\<#9762\><math|B<rsub|1>*E*F//>\<#5E73\>\<#9762\><math|A<rsub|1>*C<rsub|1>*D>>>>>>
<item>\<#5DF2\>\<#77E5\>\<#7B49\>\<#6BD4\>\<#6570\>\<#5217\><math|<around|{|a<rsub|n>|}>>\<#7684\>\<#524D\><math|3>\<#9879\>\<#548C\>\<#4E3A\><math|168>\<#FF0C\><math|a<rsub|2>-a<rsub|5>=42>\<#FF0C\>\<#5219\><math|a<rsub|6>=>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|14>>|<cell|B. <math|12>>|<cell|C. <math|6>>|<cell|D. <math|3>>>>>>
<item>\<#5DF2\>\<#77E5\>\<#7403\><math|O>\<#7684\>\<#534A\>\<#5F84\>\<#4E3A\><math|1>\<#FF0C\>\<#56DB\>\<#68F1\>\<#9525\>\<#7684\>\<#9876\>\<#70B9\>\<#4E3A\><math|O>\<#FF0C\>\<#5E95\>\<#9762\>\<#7684\>\<#56DB\>\<#4E2A\>\<#9876\>\<#70B9\>\<#5747\>\<#5728\>\<#7403\><math|O>\<#7684\>\<#7403\>\<#9762\>\<#4E0A\>\<#FF0C\>\<#5219\>\<#5F53\>\<#8BE5\>\<#56DB\>\<#68F1\>\<#9525\>\<#7684\>\<#4F53\>\<#79EF\>\<#6700\>\<#5927\>\<#65F6\>\<#FF0C\>\<#5176\>\<#9AD8\>\<#4E3A\>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|<frac|1|3>>>|<cell|B. <math|<frac|1|2>>>|<cell|C.
<math|<frac|<sqrt|3>|3>>>|<cell|D. <math|<frac|<sqrt|2>|2>>>>>>>
<item>\<#67D0\>\<#68CB\>\<#624B\>\<#4E0E\>\<#7532\>\<#3001\>\<#4E59\>\<#3001\>\<#4E19\>\<#4E09\>\<#4F4D\>\<#68CB\>\<#624B\>\<#5404\>\<#6BD4\>\<#8D5B\>\<#4E00\>\<#76D8\>\<#FF0C\>\<#5404\>\<#76D8\>\<#6BD4\>\<#8D5B\>\<#7ED3\>\<#679C\>\<#76F8\>\<#4E92\>\<#72EC\>\<#7ACB\>.\<#5DF2\>\<#77E5\>\<#8BE5\>\<#68CB\>\<#624B\>\<#4E0E\>\<#7532\>\<#3001\>\<#4E59\>\<#3001\>\<#4E19\>\<#6BD4\>\<#8D5B\>\<#83B7\>\<#80DC\>\<#7684\>\<#6982\>\<#7387\>\<#5206\>\<#522B\>\<#4E3A\><math|p<rsub|1>>\<#FF0C\><math|p<rsub|2>>\<#FF0C\><math|p<rsub|3>>\<#FF0C\>\<#4E14\><math|p<rsub|3>\<gtr\>p<rsub|2>\<gtr\>p<rsub|1>\<gtr\>0>.\<#8BB0\>\<#8BE5\>\<#68CB\>\<#624B\>\<#8FDE\>\<#80DC\>\<#4E24\>\<#76D8\>\<#7684\>\<#6982\>\<#7387\>\<#4E3A\><math|p>\<#FF0C\>\<#5219\>
A. <math|p>\<#4E0E\>\<#8BE5\>\<#68CB\>\<#624B\>\<#548C\>\<#7532\>\<#3001\>\<#4E59\>\<#3001\>\<#4E19\>\<#7684\>\<#6BD4\>\<#8D5B\>\<#6B21\>\<#5E8F\>\<#65E0\>\<#5173\>
B. \<#8BE5\>\<#68CB\>\<#624B\>\<#5728\>\<#7B2C\>\<#4E8C\>\<#76D8\>\<#4E0E\>\<#7532\>\<#6BD4\>\<#8D5B\>\<#FF0C\><math|p>\<#6700\>\<#5927\>
C. \<#8BE5\>\<#68CB\>\<#624B\>\<#5728\>\<#7B2C\>\<#4E8C\>\<#76D8\>\<#4E0E\>\<#4E59\>\<#6BD4\>\<#8D5B\>\<#FF0C\><math|p>\<#6700\>\<#5927\>
D. \<#8BE5\>\<#68CB\>\<#624B\>\<#5728\>\<#7B2C\>\<#4E8C\>\<#76D8\>\<#4E0E\>\<#4E19\>\<#6BD4\>\<#8D5B\>\<#FF0C\><math|p>\<#6700\>\<#5927\>
<item>\<#5BF9\>\<#66F2\>\<#7EBF\><math|C>\<#7684\>\<#4E24\>\<#4E2A\>\<#7126\>\<#70B9\>\<#4E3A\><math|F<rsub|1>>\<#FF0C\><math|F<rsub|2>>\<#FF0C\>\<#4EE5\><math|C>\<#7684\>\<#5B9E\>\<#8F74\>\<#4E3A\>\<#76F4\>\<#5F84\>\<#7684\>\<#5706\>\<#8BB0\>\<#4E3A\><math|D>\<#FF0C\>\<#8FC7\><math|F<rsub|1>>\<#4F5C\><math|D>\<#7684\>\<#5207\>\<#7EBF\>\<#4E0E\><math|C>\<#4EA4\>\<#4E8E\><math|M>\<#FF0C\><math|N>\<#4E24\>\<#70B9\>\<#FF0C\>\<#4E14\><math|<math-up|cos>\<angle\>*F<rsub|1>*N*F<rsub|2>=<frac|3|5>>\<#FF0C\>\<#5219\><math|C>\<#7684\>\<#79BB\>\<#5FC3\>\<#7387\>\<#4E3A\>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|<frac|<sqrt|5>|2>>>|<cell|B. <math|<frac|3|2>>>|<cell|C.
<math|<frac|<sqrt|13>|2>>>|<cell|D. <math|<frac|<sqrt|17>|2>>>>>>>
<item>\<#5DF2\>\<#77E5\>\<#51FD\>\<#6570\><math|f<around|(|x|)>>\<#FF0C\><math|g<around|(|x|)>>\<#7684\>\<#5B9A\>\<#4E49\>\<#57DF\>\<#5747\>\<#4E3A\><math|R>\<#FF0C\>\<#4E14\><math|f<around|(|x|)>+g*<around|(|2-x|)>=5>\<#FF0C\>
<math|g<around|(|x|)>-f*<around|(|x-4|)>=7>\<#FF0C\>
\<#82E5\><math|y=g<around|(|x|)>>\<#7684\>\<#56FE\>\<#50CF\>\<#5173\>\<#4E8E\>\<#76F4\>\<#7EBF\><math|x=2>\<#5BF9\>\<#79F0\>\<#FF0C\><math|g<around|(|2|)>=4>\<#FF0C\>
\<#5219\><math|<big|sum><rsup|22><rsub|k=1>f<around|(|k|)>=>
<tabular*|<tformat|<cwith|1|-1|1|-1|cell-valign|c>|<twith|table-width|1par>|<twith|table-hmode|exact>|<cwith|1|1|1|-1|cell-halign|l>|<table|<row|<cell|A.
<math|-21>>|<cell|B. <math|-22>>|<cell|C. <math|-23>>|<cell|D.
<math|-24>>>>>>
</enumerate-numeric>
\<#4E8C\>\<#3001\>\<#586B\>\<#7A7A\>\<#9898\>\<#FF08\>\<#672C\>\<#5927\>\<#9898\>\<#5171\>4\<#5C0F\>\<#9898\>\<#FF0C\>\<#5171\>20.0\<#5206\>\<#FF09\>
<\enumerate-numeric>
<assign|item-nr|12><item>\<#4ECE\>\<#7532\>\<#3001\>\<#4E59\>\<#7B49\><math|5>\<#540D\>\<#540C\>\<#5B66\>\<#4E2D\>\<#968F\>\<#673A\>\<#9009\><math|3>\<#540D\>\<#53C2\>\<#52A0\>\<#793E\>\<#533A\>\<#670D\>\<#52A1\>\<#5DE5\>\<#4F5C\>\<#FF0C\>\<#5219\>\<#7532\>\<#3001\>\<#4E59\>\<#90FD\>\<#5165\>\<#9009\>\<#7684\>\<#6982\>\<#7387\>\<#4E3A\><underline|<space|2cm>>\<#FF0E\>
<item>\<#8FC7\>\<#56DB\>\<#70B9\><math|<around|(|0,0|)>>\<#FF0C\><math|<around|(|4,0|)>>\<#FF0C\><math|<around|(|-1,1|)>>\<#FF0C\><math|<around|(|4,2|)>>\<#4E2D\>\<#7684\>\<#4E09\>\<#70B9\>\<#7684\>\<#4E00\>\<#4E2A\>\<#5706\>\<#7684\>\<#65B9\>\<#7A0B\>\<#4E3A\><underline|<space|2cm>>\<#FF0E\>
<item>\<#8BB0\>\<#51FD\>\<#6570\><math|f<around|(|x|)>=<math-up|cos><around|(|\<omega\>*x+\<varphi\>|)>*<around|(|\<omega\>\<gtr\>0,0\<less\>\<varphi\>\<less\>\<pi\>|)>>\<#7684\>\<#6700\>\<#5C0F\>\<#6B63\>\<#5468\>\<#671F\>\<#4E3A\><math|T>\<#FF0C\>\<#82E5\><math|f<around|(|T|)>=<frac|<sqrt|3>|2>>\<#FF0C\><math|x=<frac|\<pi\>|9>>\<#4E3A\><math|f<around|(|x|)>>\<#7684\>\<#96F6\>\<#70B9\>\<#FF0C\>\<#5219\><math|\<omega\>>\<#7684\>\<#6700\>\<#5C0F\>\<#503C\>\<#4E3A\><underline|<space|2cm>>\<#FF0E\>
<item>\<#5DF2\>\<#77E5\><math|x=x<rsub|1>>\<#548C\><math|x=x<rsub|2>>\<#5206\>\<#522B\>\<#662F\>\<#51FD\>\<#6570\><math|f<around|(|x|)>=2*a<rsup|x>-e*x<rsup|2>(a\<gtr\>0>\<#4E14\><math|a\<neq\>1)>\<#7684\>\<#6781\>\<#5C0F\>\<#503C\>\<#70B9\>\<#548C\>\<#6781\>\<#5927\>\<#503C\>\<#70B9\>\<#FF0C\>\<#82E5\><math|x<rsub|1>\<less\>x<rsub|2>>\<#FF0C\>\<#5219\><math|a>\<#7684\>\<#53D6\>\<#503C\>\<#8303\>\<#56F4\>\<#662F\><underline|<space|2cm>>.
</enumerate-numeric>
\<#4E09\>\<#3001\>\<#89E3\>\<#7B54\>\<#9898\>\<#FF08\>\<#672C\>\<#5927\>\<#9898\>\<#5171\>7\<#5C0F\>\<#9898\>\<#FF0C\>\<#5171\>80\<#5206\>\<#FF09\>
\ (\<#4E00\>) \ \<#5FC5\>\<#8003\>\<#9898\>\<#FF1A\>\<#5171\> 60 \<#5206\>.
<\enumerate-numeric>
<assign|item-nr|16><item>\<#8BB0\><math|\<Delta\>*A*B*C>\<#7684\>\<#5185\>\<#89D2\><math|A>\<#3001\><math|B>\<#3001\><math|C>\<#7684\>\<#5BF9\>\<#8FB9\>\<#5206\>\<#522B\>\<#4E3A\><math|a>\<#3001\><math|b>\<#3001\><math|c>\<#FF0C\>\<#5DF2\>\<#77E5\><math|<math-up|sin>C<math-up|sin><around|(|A-B|)>=<math-up|sin>B<math-up|sin><around|(|C-A|)>>\<#FF0E\>
(1)\<#8BC1\>\<#660E\>\<#FF1A\><math|2*a<rsup|2>=b<rsup|2>+c<rsup|2>>;
(2)\<#82E5\><math|a=5>\<#FF0C\><math|<math-up|cos>A=<frac|25|31>>\<#FF0C\>\<#6C42\><math|\<Delta\>*A*B*C>\<#7684\>\<#5468\>\<#957F\>\<#FF0E\><vspace|5cm>
<item>\<#5982\>\<#56FE\>\<#FF0C\>\<#56DB\>\<#9762\>\<#4F53\><math|A*B*C*D>\<#4E2D\><math|A*D*\<bot\>*C*D>\<#FF0C\><math|A*D=C*D>\<#FF0C\><math|\<angle\>*A*D*B=\<angle\>*B*D*C>\<#FF0C\><math|E>\<#4E3A\><math|A*C>\<#4E2D\>\<#70B9\>\<#FF0E\>
(1)\<#8BC1\>\<#660E\>\<#FF1A\>\<#5E73\>\<#9762\><math|B*E*D*\<bot\>>\<#5E73\>\<#9762\><math|A*C*D>;
(2)\<#8BBE\><math|A*B=B*D=2>\<#FF0C\><math|\<angle\>*A*C*B=60<rsup|\<circ\>>>\<#FF0C\>\<#70B9\><math|F>\<#5728\><math|B*D>\<#4E0A\>\<#FF0C\>\<#5F53\><math|\<bigtriangleup\>*A*F*C>\<#7684\>\<#9762\>\<#79EF\>\<#6700\>\<#5C0F\>\<#65F6\>\<#FF0C\>\<#6C42\><math|C*F>\<#4E0E\>\<#5E73\>\<#9762\><math|A*B*D>\<#6240\>\<#6210\>\<#89D2\>\<#7684\>\<#6B63\>\<#5F26\>\<#503C\>\<#FF0E\>
<image|<tuple|<#89504E470D0A1A0A0000000D4948445200000126000000C80802000000CA9FDBCB000000097048597300000EC400000EC401952B0E1B0000200049444154789CED9D792094EBDBC71F6BD48C54C4498D5DB2944245EAB4502A2DB6921427B468919693F63DD5495A7E84EAB4D2A6945695A5D00CD9A3C8A8B1945D9841336679FF78DE775EBFC1981933CF33C3FDF9ABB9E65E2EE7F8BAEEF5BAA5582C1604000090421A6D0700808105901C00802840720000A200C901008802240700200A901C00802840720000A200C901008802240700208A2CDA0E7063FBF6EDC5C5C51D1D1D582C76D0A041100451289461C3863939392D5AB4484A4A0A6D070100BE9112F3035F870F1F0E0E0EAEADAD555050802088C964120884AD5BB7EAE9E9DDBE7D5B5A1A4469808421EE92B3B3B353505078FAF46967E3AF5FBFB4B5B54F9F3EBD76ED5AB41C03000443ACA3048D464B4B4B9B397326877DD8B06176767657AF5E45C32900A04F88B5E4323333DBDBDBBB4A0E82202525A5929212C43D0200FA8A584B2E3939198BC59A999975FDAAA2A2029EDD01009285584B2E292969FAF4E93232321C7606839191913171E24454BC0200FA82F84AAEA7891C0441C9C9C9CDCDCD2B57AE44DC2900A0AF88AFE4B84CE4424242CCCDCD972F5F8EB85300405F11DFADF0E4E4640C06D375F4181515452010B2B3B3BB0E380100F1477C25979898686363232BFBFF1E32188CB0B0B0F0F0F0F7EFDFE37038147D030004461C25979090909999F9FEFD7B5B5BDBEBD7AF431044A3D14A4A4A323232ECEDED090402168B45DB47004040C4F1F4C9E7CF9F6B6B6B3B5BA4A4A4545555C78E1D0B06930049471C250700F463C477C5920B0C06036D17000001913CC9D1E9744545C5193366646666A2ED0B00C0379227B9BCBC3C0683212727B776EDDAA54B97E6E7E7A3ED1100C007922739028180C1608A8B8B1F3F7EBC6AD52A0F0F8F65CB967DF9F2056DBF00009E90BCE5130F0F0F1A8D6665653576ECD8050B163099CC7BF7EE1D3972C4C2C2E2C08103FAFAFA683B08007043F224A7AFAF9F9E9E3E7CF8F0CE463A9D1E1D1D7DECD8311B1B9B03070E686969A1E41D00D00B1236B0ACABAB939696E6D01B0441B2B2B2AB57AF2E2C2CB4B2B2B2B5B55DBF7E7D6565252A1E0200DC9130C91108042B2BAB4B972E55575733188CC58B17532814F6B7727272BEBEBE9F3F7F3635359D3163C6962D5BAAABAB51F41600E88A84490E8FC75B5959454545D5D5D5C9C8C8A8A9A94546467294919797DFB871636161A18E8ECED4A95377ECD8515757878AB7004057244C720402C1C2C282FD71F7EEDD172E5CA0D1685D4B2A2A2A6EDDBAB5B0B0505555D5D2D272CF9E3D8D8D8D087A0A00748F24498EC9641614144C9830816DD1D1D17171712112893D55193264C8AE5DBB3E7DFAA4A8A83871E2C4C3870F37373723E22C00D03D9224B92F5FBE181A1ACACACA9E3B774E5B5B1B369E3973C6C8C8887B452C16BB7FFFFEBCBC3C3A9D3E7EFCF8A0A0A0CE3340000049244972040261EAD4A910045958586030187EAB2B2B2B1F3D7A342B2BABA9A9C9C4C4243838B8BDBD5D046E0200DC9024C97DF8F0C1CACAAAABBDA6A666D9B2653C36A2A2A272EAD4A9F4F4F48A8A0A2323A30B172E50A954A1BA09007043922407EF104010E4E3E3F3E6CD1BB65D4D4DADB4B4B4B3A557D4D4D4CE9D3B979696565C5C3C6EDCB88888886ED7600000A12331926B6E6E6E6F6F5757578720A8ADAD8D4321818181274F9EE4B7CD51A3468586862627276766661A1B1B5FBB768D4EA70BCDE3DE282F2F27F600D8C7EFC7488CE43232323A6F0F70E0ECECACA4A444269305681987C35DBE7C393E3E3E2929C9D4D4F4F6EDDB4C26B30F9EF24A4C4C8CA7A7A7BEBE7E5858D8DDBB77EFDEBD1B1D1D7DFAF4690B0B8BE9D3A723E000001D581202FC040FFC6F7F7FFFC4C44451F4525454E4E6E666646474FFFE7D0683218A2E3AE3E5E5A5A9A9C9617CF6EC99B5B5B5A8BB06A085C448CEDEDE3E2D2D0D99BE3E7DFAE4E4E4347EFCF8D8D858269329BA8EB4B4B456AF5ECD612C2D2D757171115DA70074918C81258BC5CAC9C999346912F7621F3F7EDCB16347DFBB33313179F8F0E18D1B37AE5EBD6A6969F9FCF9F3BEB7D995B2B2321289C4CE8DFBF3E7CFD7AF5FC3FF36373717458F00B1006DCDF344494989A5A525FB635E5E5E696969D7626432594D4DADACAC4C885D676464CC9D3B77EAD4A96FDEBC1162B32C16EBC68D1B1004B17F9003070E4447470BB70B80182219518EBD3D00131D1D1D1F1FDFB5180683F1F5F53D7BF6AC10BBB6B4B48C8F8F3F73E6CCF1E3C767CC9891929222AC96939292646565AF5CB9121818B862C58AE3C78FFFF9E79FC26A1C20B68863EAD8AEE0F1788E45BC9EB6D1FCFDFDFDFCFC84EEC0B469D39292929292920203031515158F1D3B069F83E90BC9C9C94B962CF1F3F36332999999991F3F7E1C356A9450BC0588331213E5387EC57B3AABA5A2A272FFFE7D11B9316BD6ACB4B4B49D3B776EDEBC79E1C2855959590237054FE4E6CF9F3F7AF4681C0E676464D4ED8327807E08DA23DBDE696D6D555757EF6C494E4EC6E3F168F903131717676666B664C992BCBC3C01AAC313392291087FA452A94D4D4D42751020A64880E4DEBD7BE7E0E0C05795BB77EF86858589C81F364C26332626C6D4D4D4D5D5F5F3E7CF7CD5F5F2F2D2D0D010E90E04403C91808125C7DA092F8C1F3FFEC48913A23E36292525E5ECEC9C9B9BEBE8E8E8E4E4B46AD52A1E9F2FA7D1686FDFBE9D366D9A949494483D0488211220393C1ECF31918B8F8FBF73E70E972AE3C68D333737BF7DFBB
<item>\<#67D0\>\<#5730\>\<#7ECF\>\<#8FC7\>\<#591A\>\<#5E74\>\<#7684\>\<#73AF\>\<#586B\>\<#6CBB\>\<#7406\>\<#FF0C\>\<#5DF2\>\<#5C06\>\<#5C31\>\<#5C71\>\<#6539\>\<#9020\>\<#6210\>\<#4E86\>\<#7EFF\>\<#6C34\>\<#9752\>\<#5C71\>.\<#4E3A\>\<#4F30\>\<#8BA1\>\<#4E00\>\<#6797\>\<#533A\>\<#67D0\>\<#79CD\>\<#6811\>\<#6728\>\<#7684\>\<#603B\>\<#6750\>\<#79EF\>\<#91CF\>\<#FF0C\>\<#968F\>\<#673A\>\<#9009\>\<#53D6\>\<#4E86\><math|10>\<#68F5\>\<#8FD9\>\<#79CD\>\<#6751\>\<#6728\>\<#FF0C\>\<#6D4B\>\<#91CF\>\<#6BCF\>\<#68F5\>\<#6751\>\<#7684\>\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#800C\>\<#79EF\>(\<#5FC3\>\<#4F4D\>\<#FF1A\><math|m<rsup|2>>)\<#548C\>\<#6750\>\<#79EF\>\<#91CF\><math|<around|(|m<rsup|3>|)>>\<#FF0C\>\<#5F97\>\<#5230\>\<#5982\>\<#4E0B\>\<#6570\>\<#636E\>\<#FF1A\>
<block*|<tformat|<table|<row|<cell|\<#6837\>\<#672C\>\<#53F7\><math|i>>|<cell|1>|<cell|2>|<cell|3>|<cell|4>|<cell|5>|<cell|6>|<cell|7>|<cell|8>|<cell|9>|<cell|10>|<cell|\<#603B\>\<#548C\>>>|<row|<cell|\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#9762\>\<#79EF\><math|x
<rsub|i>>>|<cell|0.04>|<cell|0.06>|<cell|0.04>|<cell|0.08>|<cell|0.08>|<cell|0.05>|<cell|0.05>|<cell|0.07>|<cell|0.07>|<cell|0.06>|<cell|0.6>>|<row|<cell|\<#6750\>\<#79EF\>\<#91CF\><math|y<rsub|i>>>|<cell|0.25>|<cell|0.40>|<cell|0.22>|<cell|0.54>|<cell|0.51>|<cell|0.34>|<cell|0.36>|<cell|0.46>|<cell|0.42>|<cell|0.40>|<cell|3.9>>>>>
\<#5E76\>\<#8BA1\>\<#7B97\>\<#5F97\><math|<big|sum><rsup|10><rsub|i=1>x<rsub|i><rsup|2>=0.038>\<#FF0C\><math|<big|sum><rsup|10><rsub|i=1>y<rsup|2><rsub|i>=1.6158>\<#FF0C\><math|<big|sum><rsup|10><rsub|i=1>x<rsub|i>*y<rsub|i>=0.2474>\<#FF0E\>
(1)\<#4F30\>\<#8BA1\>\<#8BE5\>\<#6797\>\<#533A\>\<#8FD9\>\<#79CD\>\<#6811\>\<#6728\>\<#5E73\>\<#5747\>\<#4E00\>\<#68F5\>\<#7684\>\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#9762\>\<#79EF\>\<#4E0E\>\<#5E73\>\<#5747\>\<#4E00\>\<#68F5\>\<#7684\>\<#6750\>\<#79EF\>\<#91CF\>\<#FF1A\>
(2)\<#6C42\>\<#8BE5\>\<#6797\>\<#533A\>\<#8FD9\>\<#79CD\>\<#6811\>\<#6728\>\<#7684\>\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#9762\>\<#79EF\>\<#4E0E\>\<#6750\>\<#79EF\>\<#91CF\>\<#7684\>\<#6837\>\<#672C\>\<#76F8\>\<#5173\>\<#7CFB\>\<#6570\>(\<#7CBE\>\<#786E\>\<#5230\>0.01);
(3)\<#73B0\>\<#6D4B\>\<#91CF\>\<#4E86\>\<#8BE5\>\<#6797\>\<#533A\>\<#6240\>\<#6709\>\<#8FD9\>\<#79CD\>\<#6811\>\<#6728\>\<#7684\>\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#9762\>\<#79EF\>\<#FF0C\>\<#5E76\>\<#5F97\>\<#5230\>\<#6240\>\<#6709\>\<#8FD9\>\<#79CD\>\<#6811\>\<#6728\>\<#7684\>\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#9762\>\<#79EF\>\<#603B\>\<#548C\>\<#4E3A\><math|186*m<rsup|2>>.\<#5DF2\>\<#77E5\>\<#6811\>\<#6728\>\<#7684\>\<#6750\>\<#79EF\>\<#91CF\>\<#4E0E\>\<#5176\>\<#6839\>\<#90E8\>\<#6A2A\>\<#622A\>\<#9762\>\<#79EF\>\<#8FD1\>\<#4F3C\>\<#6210\>\<#6B63\>\<#6BD4\>.\<#5229\>\<#7528\>\<#4EE5\>\<#4E0A\>\<#6570\>\<#636E\>\<#7ED9\>\<#51FA\>\<#8BE5\>\<#6797\>\<#533A\>\<#8FD9\>\<#79CD\>\<#6811\>\<#6728\>\<#7684\>\<#603B\>\<#6750\>\<#79EF\>\<#91CF\>\<#7684\>\<#4F30\>\<#8BA1\>\<#503C\>\<#FF0E\>
\<#9644\>\<#FF1A\>\<#76F8\>\<#5173\>\<#7CFB\>\<#6570\><math|r=<frac|<big|sum><rsup|n><rsub|i=1><around*|(|x<rsub|i>-<wide|x|\<bar\>>|)>*<around*|(|y<rsub|i>-<wide|y|\<bar\>>|)>|<sqrt|<big|sum><rsup|n><rsub|i=1><around*|(|x<rsub|i>-<wide|x|\<bar\>>|)><rsup|2>*<big|sum><rsup|n><rsub|i=1><around*|(|y<rsub|i>-<wide|y|\<bar\>>|)><rsup|2>>>>\<#FF0C\><math|<sqrt|1.896>\<approx\>1.377>\<#FF0E\><vspace|5cm>
<item>\<#5DF2\>\<#77E5\>\<#692D\>\<#5706\><math|E>\<#7684\>\<#4E2D\>\<#5FC3\>\<#4E3A\>\<#5750\>\<#6807\>\<#539F\>\<#70B9\>\<#FF0C\>\<#5BF9\>\<#79F0\>\<#8F74\>\<#4E3A\><math|x>\<#8F74\>\<#FF0C\><math|y>\<#8F74\>\<#FF0C\>\<#4E14\>\<#8FC7\><math|A*<around|(|0,-2|)>>\<#FF0C\>
<math|B*<around|(|<frac|3|2>,-1|)>> \<#4E24\>\<#70B9\>.
(1)\<#6C42\><math|E>\<#7684\>\<#65B9\>\<#7A0B\>;
(2)\<#8BBE\>\<#8FC7\>\<#70B9\><math|P<around|(|1,-2|)>>\<#7684\>\<#76F4\>\<#7EBF\>\<#4EA4\><math|E>\<#4E8E\><math|M>\<#FF0C\><math|N>\<#4E24\>\<#70B9\>\<#FF0C\>\<#8FC7\><math|M>\<#4E14\>\<#5E73\>\<#884C\>\<#4E8E\><math|x>\<#7684\>\<#76F4\>\<#7EBF\>\<#4E0E\>\<#7EBF\>\<#6BB5\><math|A*B>\<#4EA4\>\<#4E8E\>\<#70B9\><math|T>\<#FF0C\>\<#70B9\><math|H>\<#6EE1\>\<#8DB3\><math|<wide|M*T|\<wide-varrightarrow\>>=<wide|T*H|\<wide-varrightarrow\>>>\<#FF0C\>\<#8BC1\>\<#660E\>\<#FF1A\>\<#76F4\>\<#7EBF\><math|H*N>\<#8FC7\>\<#5B9A\>\<#70B9\>\<#FF0E\><vspace|5cm>
<item>\<#5DF2\>\<#77E5\>\<#51FD\>\<#6570\><math|f<around|(|x|)>=<math-up|ln><around|(|1+x|)>+a*x*e<rsup|-x>>\<#FF0E\>
(1)\<#5F53\><math|a=1>\<#65F6\>\<#FF0C\>\<#6C42\>\<#66F2\>\<#7EBF\><math|f<around|(|x|)>>\<#5728\>\<#70B9\><math|<around|(|0,f<around|(|0|)>|)>>\<#5904\>\<#7684\>\<#5207\>\<#7EBF\>\<#65B9\>\<#7A0B\>\<#FF1A\>
(2)\<#82E5\><math|f<around|(|x|)>>\<#5728\>\<#533A\>\<#95F4\><math|<around|(|-1,0|)>>\<#FF0C\><math|<around|(|0,+\<infty\>|)>>\<#5404\>\<#6070\>\<#6709\>\<#4E00\>\<#4E2A\>\<#96F6\>\<#70B9\>\<#FF0C\>\<#6C42\><math|a>\<#7684\>\<#53D6\>\<#503C\>\<#8303\>\<#56F4\>\<#FF0E\><vspace|5cm>
</enumerate-numeric>
(\<#4E8C\>) \<#9009\>\<#8003\>\<#9898\>\<#FF1A\>\<#5171\> 10 \<#5206\>
<\enumerate>
<assign|item-nr|21><item>\<#5728\>\<#76F4\>\<#89D2\>\<#5750\>\<#6807\>\<#7CFB\><math|x*O*y>\<#4E2D\>\<#FF0C\>\<#66F2\>\<#7EBF\><math|C>\<#7684\>\<#65B9\>\<#7A0B\>\<#4E3A\><math|<around*|{|<tabular*|<tformat|<cwith|1|-1|1|1|cell-halign|l>|<cwith|1|-1|1|1|cell-lborder|0ln>|<cwith|1|-1|1|1|cell-rborder|0ln>|<table|<row|<cell|x=<sqrt|3><math-up|cos>2*t>>|<row|<cell|y=2<math-up|sin>t>>>>>|\<nobracket\>>(t>\<#4E3A\>\<#53C2\>\<#6570\><math|)>.\<#4EE5\>\<#5750\>\<#6807\>\<#539F\>\<#70B9\>\<#4E3A\>\<#6781\>\<#70B9\>\<#FF0C\><math|x>\<#8F74\>\<#6B63\>\<#534A\>\<#8F74\>\<#4E3A\>\<#6781\>\<#8F74\>\<#5EFA\>\<#7ACB\>\<#6781\>\<#5750\>\<#6807\>\<#7CFB\>\<#FF0C\>\<#5DF2\>\<#77E5\>\<#76F4\>\<#7EBF\><math|l>\<#7684\>\<#6781\>\<#5750\>\<#6807\>\<#65B9\>\<#7A0B\>\<#4E3A\><math|\<rho\><math-up|sin><around|(|\<theta\>+<frac|\<pi\>|3>|)>+m=0>\<#FF0E\>
(1)\<#5199\>\<#51FA\><math|l>\<#7684\>\<#76F4\>\<#89D2\>\<#5750\>\<#6807\>\<#65B9\>\<#7A0B\>\<#FF1A\>
(2)\<#82E5\><math|l>\<#4E0E\><math|C>\<#6709\>\<#516C\>\<#5171\>\<#70B9\>\<#FF0C\>\<#6C42\><math|m>\<#7684\>\<#53D6\>\<#503C\>\<#8303\>\<#56F4\>\<#FF0E\><vspace|5cm>
<item>\<#5DF2\>\<#77E5\><math|a.*b.*c>\<#4E3A\>\<#6B63\>\<#6570\>\<#FF0C\>\<#4E14\><math|a<rsup|<frac|3|2>>+b<rsup|<frac|3|2>>+c<rsup|<frac|3|2>>=1>\<#FF0C\>\<#8BC1\>\<#660E\>\<#FF1A\>
\ <math|<around|(|1|)>*a*b*c\<leq\><frac|1|9>>;
<math|<around|(|2|)><frac|a|b+c>+<frac|b|a+c>+<frac|c|a+b>\<leq\><frac|1|2*<sqrt|a*b*c>>>.<vspace|5cm>
</enumerate>
\;
\;
</body>
<initial|<\collection>
</collection>>